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Summary 

We apply reinforcement learning algorithms to option hedging and demonstrate that: 

• Reinforcement learning “agents” outperform Black-Scholes – based hedging 
strategies in presence of trading costs and stochastic volatility; 

• Agents show robust performance for a variety of option strikes and maturities – even 
those they have never seen before; 

• Agents can transfer knowledge acquired on synthetic data to the real-world hedging 
if their training environment is versatile and includes stochastic volatility and jumps 
in the underlying price process.  

 

Introduction 

Machine learning is resolutely marching its way into finance. From credit scoring to option 
pricing and from fraud detection to algo trading – machine learning algorithms are proving 
their effectiveness in many financial applications. The massive generalization power of these 
algorithms allows them to tackle a wide variety of problems. Machine learning is particularly 
successful in situations where there is a clear underlying nonlinear function (which can be 
very complex and completely unknown), relating the inputs with the output. An excellent 
example of such a situation is the problem of option pricing, where a highly nonlinear 
relationship connects input parameters such as the volatility, price of the underlying, time to 
maturity, dividends, interest rates to the option price. Machine learning methods, when 
applied to option pricing, can deal not only with the standard Black-Scholes assumptions, but 
also with stochastic volatility, exotic options, while providing substantial gain in 
computational speed.  Successful applications of machine learning in this area have been 
already extensively documented (see, eg., Ferguson and Green (2018), De Spiegeleer et al. 
(2018), Liu et al. (2019) and other recent papers on this topic).   

A related ML application area is hedging of options. Here also, a complex nonlinear function 
relates the option’s parameters to the option’s delta and other greeks. This problem is not 
only nonlinear – it is also a sequential decision-making problem, where hedging decisions 
must be continuously made throughout the lifetime of an option, and these decisions are 
accompanied by a clear notion of “reward”. A machine learning tool excellently suited for 
this type of problems is the so-called reinforcement learning: a class of machine learning 
algorithms which sequentially tune their parameters according to the rewards associated 
with actions.  

In this paper, we discuss how reinforcement learning can be successfully applied to hedging 
of options and show that these machine learning algorithms can “transfer” knowledge 
obtained from simulated data to the real-world option trading environment. To our 
knowledge, this is the first study on ML for hedging, which reports a successful knowledge 
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transfer to real data, while previous work in this domain has been done solely on simulated 
data.  
 

Reinforcement Learning 

In reinforcement learning, we typically talk of “agents”, who learn to achieve a goal by 
learning from past actions and from feedback given by the environment in the form of a 
reward. Based on the agent's action, the reward is a way of letting the agent know how good 
an action was at that time. A reinforcement learning agent takes actions in an environment, 
which are interpreted into a reward and a representation of the state, which are then fed 
back to the agent. This is shown schematically on Figure 1.  
 

 

Figure 1: The general schematic operating way of Reinforcement Learning Algorithms.  
Based on an observed state of the environment and previous reward,  

the agent performs an action that moves the 
environment to a new state and generates a reward.  

The long-term goal of the agent is to maximize the cumulative reward. 
 
The main components of reinforcement learning: state/environment  action  reward – 
are all present in a hedging problem, where the action can be thought of as a delta-hedging 
decision and the reward – as hedging costs, or a P/L of your hedged portfolio. In the hedging 
context, an agent learns to maximize the expected profit and loss of the total hedged option 
portfolio and to minimize the P/L variance at the option's expiration date (a long-term goal). 
The agent is interacting with a continuously changing market environment. This observable 
environment is influenced by the actions of the agent: the dynamically changing amount 
held in the underlying asset, needed to make the position delta neutral in every period. After 
each trading time, the market transitions into a new state, due to movement in asset prices, 
volatility and so on. The agent observes this new state and obtains a reward: the profit and 
loss achieved due to the action, which consequently determines the next action. 

Reinforcement learning has been recently applied to the hedging problem by Hull et al. 
(2019) and Kolm et al. (2019), who demonstrated, based on simulated option prices, that it is 
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possible to train a reinforcement learning algorithm to hedge a particular option in the 
framework of a specific model (e.g., Black-Scholes or stochastic volatility (SV) model). In this 
way they demonstrated a potential of this machine learning technique for making hedging 
decisions.  

However, the reality of hedging presents several obstacles to implementing their approach 
directly. First, we do not know what the exact data-generating mechanism is, i.e., what is the 
price process of the underlying. Second, typically we do not have enough real trading option 
data to properly train a reinforcement learning algorithm. Finally, training a separate 
algorithm for each specific option (i.e., with a specific moneyness and maturity) is infeasible 
due to time and computational efforts involved.  

 

So, we asked ourselves two questions: will a reinforced learning 
algorithm, trained on just one type of option, be able to cope with 
hedging a variety of options? And, if we train a reinforcement 
learning algorithm on a versatile range of price processes, will it 
transfer its acquired knowledge to the real-world hedging 
environment? 

 

This last question, of transferring the knowledge leaned on synthetic, or simulated data to 
deal with the real market environment, is considered a “holy grail” of machine learning and 
it even has a special name: transfer learning. In other words, we wanted to know: can our 
reinforcement learning machine learn building with toy bricks and then go and build a real 
house? 
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The setup of investigation 

We trained two well-known reinforcement learning algorithms – Deep Q-Networks (DQN) 
and Deep Deterministic Policy Gradient (DDPG) – in various environments: GBM, stochastic 
volatility (SV) model of Heston and SV model with jumps in the underlying. Such training 
environments were meant to be as diverse as possible in terms of price and volatility 
dynamics, to let the agents generalize well on the real market data. Then we compared their 
performance to the same algorithms but trained in a more specific setting: i.e., in the same 
type of environment and for the same type of options (as those in the test set). One would 
suspect that the agents trained to perform a more specific task would do much better than 
those trained to deal with for more “general” situations – but this turned out not to be the 
case. Finally, we investigated how well our trained agents can hedge real-life options, or, in 
other words, how well they can transfer their knowledge acquired on simulated data to the 
real hedging environment.  

In our setting, we consider hedging task as a utility maximization problem, where agents 
seek an optimal hedging strategy according to some utility function. Such utility function can 
correspond to maximizing the agent’s expected wealth (or P/L) at the end of the option’s 
life, minimizing the hedging error or its variance, or a combination of these (we use such a 
combination, in the form of a mean-variance utility optimization).  

Using P/L-optimizing utility function, we can consider transaction costs involved in hedging 
(these can be actual trading fees, bid-ask spread in the underlying or market impact) – and 
these costs can severely affect hedging decisions. On one hand, an option trader wants to 
hedge as frequently as possible, since only then one can achieve a nearly perfect hedge, but 
on the other hand, frequent hedging can lead to unacceptable transactions costs.   

We train our reinforcement learning algorithms to delta-hedge European call options. A 
“state” at each point in time is characterized by the underlying asset price, volatility, the 
number of units of the underlying in the hedging portfolio, the value of the option and its 
delta. Furthermore, we specify the reward as the increment in P/L, penalized by its variance 
(which corresponds to our mean-variance optimization problem). Trading costs are 
calculated based on the tick size, the number of units of underlying bought or sold and a 
parameter reflecting the market friction for a particular underlying (which can be more 
liquid or less liquid, hence different friction parameter can be used). Finally, the action is 
naturally the amount of the underlying held in the hedging portfolio until the next re-
hedging date. For mathematical details in all these choices and definitions, we refer the 
reader to the full paper (Giurca and Borovkova (2021)).  

Note that the above framework is suitable not just for (a portfolio of) European call options, 
but can be extended to puts, options with other, more exotic payoffs as well as other 
options (path-dependent, American options or options on assets that provide dividends).    
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The evolution of the market (i.e., of the underlying asset) is simulated by the combination of 
Black-Scholes model, Heston stochastic volatility model and Bates model of stochastic 
volatility with jumps. Especially for the goal of transfer learning, we construct a rich training 
set that exposes the agents to enough versatile training environments, to enable them to 
hedge options in a real market environment. We do this by including episodes generated by 
a mixture of different market simulators in our training set. Compared to a training set based 
solely on realizations of one model, where the learned optimal policies are specific to this 
environment, in our setting the agent strategies are (hopefully) robust to an unknown 
testing environment. Instead of assuming one model that reflects the asset price dynamics 
of real market data best, we use a multitude of models: Black-Scholes, Heston and Bates. 
 
The performance of the reinforcement learning agents is compared with two benchmark 
hedging strategies: the discrete time Black-Scholes delta hedging and Wilmott delta hedging 
(this is a variant of Black-Scholes hedging strategy but considering the balance between 
transaction costs and quality of discrete delta hedging, as measured by Gamma).  
 
For simulated-to-real knowledge transfer analysis, we apply our trained algorithms to a rich 
set of daily S&P500 options data from 2019. We chose not to include the data from 2020, as 
this year can be described as a period of abnormal market conditions due to the Covid-19 
pandemic, which introduced large fluctuations in prices and volatility in stock markets. We 
test our algorithms on those options that are close to being at-the-money and have up to 6 
months until maturity. S&P500 price evolution is simulated, for all considered models, using 
model parameters calibrated on the market data from 2009 until 2018. 
 

 

  



 
                                                                  White paper: Reinforced learning for hedging: transfer learning at work 

 
 

www.probability.nl 
 

7 

 

Results 

Our full paper (Giurca and Borovkova (2021)) contains a multitude of interesting results – of 
which we will mention here just a few most significant ones.  

First, in the “idealized” Black-Scholes environment, the reinforcement learning algorithms 
show particularly superior performance (when compared to benchmark strategies) in the 
most realistic situations: when transaction costs are high, and hedging is done daily (rather 
than weekly or monthly). Also, agents perform particularly well for long-maturity options. 
Once we depart from Black-Scholes environment and move into stochastic volatility 
territory, reinforcement learning agents show superior performance in all situations – 
indicating they are much better in dealing with more complex price processes than either 
BS-based hedging strategies. In practice, asset prices exhibit stochastic volatility, but hedging 
is done predominantly by Black-Scholes delta – so this result of superior performance of 
reinforcement learning agents is particularly useful in practice.  

 

Next, we tested our agents on options different than those they 
were trained on. It turns out that agents perform quite well (in 
terms of expected P/L) when hedging European options with a 
variety of characteristics (moneyness and maturities), even when 
they were trained to hedge one specific European call option. So, 
they can “generalize” their acquired hedging knowledge to a wider 
range of options than just those they have been trained on. The 
agents’ robustness to different strikes (rather than maturities) is 
particularly pronounced. 

 

Furthermore, agents trained on a rich data set containing scenarios of different volatility 
levels have a much better hedging performance than BS or Wilmott hedging strategies, 
making them more robust in changing volatility environments. Also, we compared the 
agents trained on a variety of volatility environments (“versatile” agents) to those trained on 
a one specific volatility level (“specific” agents). The comparison is done on the test set with 
the same volatility level as that where “specific” agents were trained on. One would expect 
that agents trained on one specific task would outperform – but it turns out that “versatile” 
agents deliver the same performance as the “specific” ones. This means that using a 
versatile training set, which covers many volatility regimes, makes the agents robust in the 
real application environment.  
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Finally, what about the performance of the agents in the real market environment (i.e., 
when hedging real traded options), after they were trained on scenarios generated from a 
multitude of price models? It turns out the reinforcement learning algorithms reduce the 
hedging costs by 30% compared to Black-Scholes and 10% to Wilmott hedging strategies and 
had up to 14% lower variance, as Table 1 shows.  

 

Table 1: Expected P/L, its variance and minimum P/L for two reinforcement learning algorithms and for two benchmark 
hedging strategies. 

If we examine the minimum profit and loss at maturity, we see that, in some situations, the 
reinforcement learning agents show less than optimal performance. This could be the 
consequence of them encountering situations never seen before – which can be dealt with 
by a more precise calibration of the models to market data and by fine-tuning model’s 
hyperparameters such as the risk aversion coefficient. Recall that this parameter is 
responsible for the variance and outliers in agents’ P/L, and hence, increasing this parameter 
could reduce this downside risk.  
 
The testing period was the year 2019, which was a relatively stable market. An in-depth 
testing on a more volatile market period (such as 2020) should be performed to assess the 
behavior of the agents under such circumstances. We imagine that, to deal with market 
distress, it can be useful to train the agents on two types of markets separately - a stable and 
a volatile period - and to use them according to the market environment encountered by 
traders in a precise situation, instead of using “universal” agents, trained on one training set. 
 
While in simulated environment, we saw that DDPG algorithm outperformed DQN in 
terms of average profit and loss, on empirical data this difference fades away. As 
the training of DDPG is much more time consuming and sensitive to hyper-parameter tuning, 
a discrete action space algorithm like DQN would suffice in practice, to achieve a strong 
hedging performance. 
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To conclude 

Here and in our extended paper (Giurca and Borovkova (2021)), we demonstrated that 
reinforcement learning algorithms can be successfully applied to the option hedging 
problem, We performed a multitude of experiments showing their superior performance in 
realistic situations – such as high transaction costs and stochastic volatility. Furthermore, we 
demonstrated that the “transfer knowledge” – being able to deal with real data while 
training the algorithms on the simulated ones - was successful. To our knowledge, this is the 
first such study, since all other studies in this area rely on synthetic data both for training 
and testing.   

 

Our results are promising: we saw that reinforcement learning is a robust and 
flexible tool that can be used in the real-world hedging. However, the results 
can be improved further, by tuning model and hyperparameters and by 
separating stable and volatile market environments in the training phase.  

 

Due to scarcity and high costs of historical option data and the computational resources 
required to train the algorithms, transfer learning is of fundamental importance in 
applications of machine learning to pricing and hedging of options. The ideal goal – to train 
an algorithm on synthetic data and for one specific derivative and use it for different 
derivatives and in real hedging environment – seems within reach.  
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